
yapCAD Documentation
Release unknown

Richard DeVaul

Jan 02, 2023

CONTENTS

1 Contents 3
1.1 License . 3
1.2 Contributors . 3
1.3 Changelog . 3

1.3.1 Version 0.1.5 . 3
1.3.1.1 what’s new: . 3
1.3.1.2 Known problems . 4

1.3.2 Version 0.2.0 . 4
1.3.2.1 what’s new: . 4
1.3.2.2 Known problems . 4

1.4 yapcad . 5
1.4.1 yapcad package . 5

1.4.1.1 Submodules . 5
1.4.1.2 yapcad.combine module . 5
1.4.1.3 yapcad.drawable module . 5
1.4.1.4 yapcad.ezdxf_drawable module . 5
1.4.1.5 yapcad.geom module . 5
1.4.1.6 yapcad.geom3d module . 5
1.4.1.7 yapcad.geometry module . 5
1.4.1.8 yapcad.poly module . 5
1.4.1.9 yapcad.pyglet_drawable module . 5
1.4.1.10 yapcad.xform module . 5
1.4.1.11 Module contents . 5

1.5 yapCAD . 5
1.5.1 what’s yapCAD for? . 5
1.5.2 software status . 5
1.5.3 yapCAD installation, documentation, and examples . 7

1.5.3.1 installation . 7
1.5.3.2 examples . 7
1.5.3.3 documentation . 7

1.5.4 yapCAD goals . 7
1.5.5 yapCAD examples . 8
1.5.6 yapCAD geometry . 9

1.5.6.1 vector representation in yapCAD . 10
1.5.6.2 pure geometry . 10
1.5.6.3 drawable geometry . 11

1.5.7 yapCAD architecture . 12
1.5.8 Note . 12

2 Indices and tables 13

i

3 What is Parametric Design? 15
3.1 the acrylic box: a parametric design example . 15

Python Module Index 17

Index 19

ii

yapCAD Documentation, Release unknown

Welcome to yapCAD, yet another procedural CAD and computational geometry system, written in Python. This project
is still in a pretty early state, though we hope you will find it useful.

Note: yapCAD was created to solve some fairly specific problems in procedural CAD and parametric design , and at
present is most developed for generating 2D drawings in the AutoCad DXF format. If you don’t know what procedural
CAD or paramaterized design might be useful for, this may not be the tool for you.

On the other hand, if you are tired of manually editing your CAD files whenever you change the thickness of a material,
the size of a pipe fitting, or the diameter and spacing of bolts, etc., this might just be the tool you are looking for.

For an example and discussion of what parametric design is and why it might be useful see What is Parametric Design?
below.

Much of the documentation for yapCAD can be found in the README files, as well as in the yapcad.geom module
documentation linked below.

CONTENTS 1

http://docs.python.org/
https://en.wikipedia.org/wiki/Parametric_design
https://en.wikipedia.org/wiki/AutoCAD_DXF

yapCAD Documentation, Release unknown

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 License

The MIT License (MIT)

Copyright (c) 2020 Richard DeVaul

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.2 Contributors

• Richard DeVaul <richard.devaul@gmail.com>

1.3 Changelog

1.3.1 Version 0.1.5

1.3.1.1 what’s new:

• Pre-release, heading towards V0.2.x

• Restructuring for package release

• Lots more documentation (still incomplete)

• Fixes to package configuration

3

mailto:richard.devaul@gmail.com

yapCAD Documentation, Release unknown

1.3.1.2 Known problems

• Incomplete documentation, especially outside the yapcad.geom module.

• Occasional problems with complex boolean operations

• Incomplete functionality around 3D modeling

• Inconsistent inclusion of licensing boilerplate

1.3.2 Version 0.2.0

1.3.2.1 what’s new:

• First announced version of yapCAD. Yay!

• Added new boxcut example, showing a fully worked (if simple) parametric design system.

• Additional documentation updates and minor bugfixes.

1.3.2.2 Known problems

• Our yapCAD readthedocs documentation is missing the expanded documentation from submodules, which is a
problem since much of yapCAD’s documentation is in the form of docstrings in the source. I’m working on
getting this sorted out. In the mean time, you may want to build a local copy of the documentation as described
in the main README file. Or, checkout and read the source.

• Incomplete documentation, especially outside the yapcad.geom module.

• Occasional problems with complex boolean operations. A bug in the intersectXY method of the Boolean
class.

• Incomplete functionality around 3D modeling

• Inconsistent inclusion of licensing boilerplate, other minor formatting issues.

4 Chapter 1. Contents

https://yapcad.readthedocs.io/en/latest/index.html

yapCAD Documentation, Release unknown

1.4 yapcad

1.4.1 yapcad package

1.4.1.1 Submodules

1.4.1.2 yapcad.combine module

1.4.1.3 yapcad.drawable module

1.4.1.4 yapcad.ezdxf_drawable module

1.4.1.5 yapcad.geom module

1.4.1.6 yapcad.geom3d module

1.4.1.7 yapcad.geometry module

1.4.1.8 yapcad.poly module

1.4.1.9 yapcad.pyglet_drawable module

1.4.1.10 yapcad.xform module

1.4.1.11 Module contents

1.5 yapCAD

yet another procedural CAD and computational geometry system written in python 3

1.5.1 what’s yapCAD for?

First and foremost, yapCAD is a framework for creating parametric, procedural, and generative design systems. You
can also use yapCAD for other CAD, CAM, and computational geometry purposes.

1.5.2 software status

yapCAD is still very much in beta, although it is already being used by for professional engineering purposes. If you
are using yapCAD in interesting ways, feel free to let us know in the yapCAD discussions forum

1.4. yapcad 5

https://en.wikipedia.org/wiki/Parametric_design
https://en.wikipedia.org/wiki/Parametric_design
https://github.com/rdevaul/yapCAD/discussions

yapCAD Documentation, Release unknown

Fig. 1: yapCAD image

6 Chapter 1. Contents

yapCAD Documentation, Release unknown

1.5.3 yapCAD installation, documentation, and examples

1.5.3.1 installation

yapCAD is a pure python library, so no special steps are required for installation. You can install it a variety of ways,
but the recommended method is to use pip to install it into your local site-packages directory, as follows:

pip install yapCAD --user

You can also clone the github repository and install from source:

git clone https://github.com/rdevaul/yapCAD.git
cd yapCAD
python setup.py install --user

1.5.3.2 examples

The yapCAD github repository includes examples. To run the examples, clone the github repository as shown above,
and make sure that your PYTHONPATH includes the cloned top-level yapCAD directory. You will find the examples
in the yapCAD/examples directory.

For a fully worked parametric design system, see the boxcut example.

1.5.3.3 documentation

Online yapCAD documentation can be found here: https://yapcad.readthedocs.io/en/latest/ — for some reason
readthedocs.io isn’t generating the full module documentation, so you might want to build a local copy, as de-
scribed below.

To build the HTML yapCAD documentation locally, first make sure you have the sphinx package installed:

pip install sphinx --user

Then clone the github repository as shown above, cd to the yapCAD directory, and type

make -C docs html

This will build the HTML documents in the build/sphinx/html directory. You can also build documentation in the
other formats supported by Sphinx. See the Sphinx documentation for more information.

1.5.4 yapCAD goals

The purpose of yapCAD is to support 2D and 3D computational geometry and parametric, procedural, and generative
design projects in python3. yapCAD is designed to support multiple rendering back-ends, such that a relatively small
amount of code is necessary to add support for a 2D or 3D cad or drawing file format. At present, yapCAD supports
the AutoCad DXF file format for creating two-dimensional drawings and OpenGL for creating interactive 2D and 3D
renderings.

The foundations of yapCAD are grounded in decades of the author’s experience with graphics system programming,
3D CAD and simulation. yapCAD has an underlying framework and architecture designed to support sophisticated
computational geometry and procedural CAD applications. At the same time, the design of yapCAD should make
easy stuff relatively easy, and the more advanced stuff possible.

1.5. yapCAD 7

https://yapcad.readthedocs.io/en/latest/
https://www.sphinx-doc.org/en/master/

yapCAD Documentation, Release unknown

The initial implementation of yapCAD provides DXF file creation support through the awesome ezdxf package, and
interactive OpenGL visualization using the amazing pyglet package.

1.5.5 yapCAD examples

(for a more complete list, see the examples folder)

It’s pretty easy to make a DXF drawing with yapCAD. Here is an example:

from yapcad.ezdxf_drawable import *
from yapcad.geom import *

#set up DXF rendering
dd=ezdxfDraw()
dd.filename = "example1-out"

make dxf-renderable geometry

make a point located at 10,10 in the x-y plane, rendered as a small
red cross and circle
dd.pointstyle = 'xo' # also valid are 'x' or 'o'
dd.linecolor = 1 # set color to red (DXF index color 1)
dd.draw(point(10,10))

make a line segment between the points -5,10 and 10,-5 in the x-y plane
and draw it in white

dd.linecolor='white' # set color by name
dd.draw(line(point(-5,10),

point(10,-5)))

make an arc with a center at 0,3 with a radius of 3, from 45 degrees
to 135 degrees, and draw it in aqua

dd.linecolor=[0,255,255] # RGB tripple, corresponds to 'aqua'
dd.draw(arc(point(0,3),3,45,135))

write out the geometry as example1-out.dxf
dd.display()

The yapCAD system isn’t just about rendering, of course, it’s about computational geometry. For example, if you want
to calculate the intersection of lines and arcs in a plane, we have you covered:

from yapcad.geom import *

define some points
a = point(5,0)
b = point(0,5)
c = point(-3,0)
d = point(10,10)

make a couple of lines
l1 = line(a,b)

(continues on next page)

8 Chapter 1. Contents

https://github.com/mozman/ezdxf
https://github.com/pyglet/pyglet

yapCAD Documentation, Release unknown

(continued from previous page)

l2 = line(c,d)

define a semicircular arc centered at 2.5, 2,5 with a radius of 2.5
extending from 90 degrees to 135 degrees

arc1=arc(point(2.5,2.5),2.5,90.0,270.0)

calculate the intersection of lines l1 and l2
int0 = intersectXY(l1,l2)

calculate the intersection of the line l1 and the arc arc1
int1 = intersectXY(l1,arc1)

print("intersection of l1 and l2:",vstr(int0))
print("intersection of l1 and arc1:",vstr(int1))

And of course yapCAD supports calculating intersections between any simple and compound, or compound and com-
pound geometry object.

There are lots more examples available to demonstrate the various computational geometry and rendering capabilities
of yapCAD, including 3D geometry and OpenGL rendering.

1.5.6 yapCAD geometry

yapCAD distinguishes between “pure” geometric elements, such as lines, arcs, etc., and drawn representations of those
things, which might have attributes like line color, line weight, drawing layer, etc. This distinction is important, because
the pure geometry exists independent of these attributes, which are themselves rendering-system dependent.

More importantly, for every geometric element you decide to draw, there will typically be many more — perhaps
dozens — that should not be in the final rendering. By separating these two elements — computation and rendering
— yapCAD makes them both more intentional and reduces the likelihood of certain type of drawing-quality issues,
such as redundant or spurious drawing elements, that can cause confusion problems for computer-aided manufacturing
(CAM).

For example, you might construct a finished drawing that includes a drill pattern that consists of circles (drill holes
with centers) that follow a complex, geometrically constrained pattern. This pattern is itself the result of numerous
computational geometry operations, perhaps driven by parameters relating to the size and shape of other parts.

In a program like Autodesk’s Fusion360, you would typically use construction lines and constraints to create the un-
derlying geometric pattern. These additional construction elements would have to be removed in order to make a clean
DXF export of your drawing. On more than one occasion yapCAD’s author has created headaches by failing to re-
move some of these elements, confusing CAM technicians, causing delays, and sometimes resulting in expensive part
fabrication errors.

Thus, yapCAD allows you to work freely with computational geometry without cluttering up your drawing page, since
you specifically decide what to draw. It also means you can do computational geometry in yapCAD without ever
invoking a rendering system, which can be useful when incorporating these geometry operations as part of a larger
computational system, such as a tool-path generator.

As a rule, in yapCAD pure geometry representations capture only the minimum necessary to perform computational
geometry, and the rest gets dealt with by the rendering system, which are subclasses of Drawable that actually make
images, CAD drawings, etc.

1.5. yapCAD 9

examples/README.rst

yapCAD Documentation, Release unknown

1.5.6.1 vector representation in yapCAD

For the sake of uniformity, all yapCAD vectors are stored as projective geometry 4-vectors. (see discussion in archi-
tecture, below) However, most of the time you will work with them as though they are 3-vectors or 2-vectors.

It would be annoying to have to specify the redundant coordinates you aren’t using every time you specify a vector,
so yapCAD provides you with the vect function. It fills in defaults for the z and w parameters you may not want to
specify. e.g.

>>> from yapcad.geom import *
>>> vect(10,4)
[10, 4, 0, 1]
>>> add(vect(10,4),vect(10,9)) ## add operates in 3-space
[20, 13, 0, 1.0]

Of course, you can specify all three (or even four) coordinates using vect.

Since it gets ugly to look at a bunch of [x, y, z, w] lists that all end in 0, 1] when you are doing 2D stuff, yapCAD
provides a convenience function vstr that intelligently converts yapCAD vectors (and lists that contain vectors, such
as lines, triangles, and polygons) to strings, assuming that as long as z = 0 and w = 1, you don’t need to see those
coordinates.

>>> from yapcad.geom import *
>>> a = sub(vect(10,4),vect(10,9)) ## subtract a couple of vectors
>>> a
[0, -5, 0, 1.0]
>>> print(vstr(a)) ## pretty printing, elide the z and w coordinates
>>> [0, -5]

1.5.6.2 pure geometry

Pure geometric elements in yapCAD form the basis for computational geometry operations, including intersection and
inside-outside testing. Pure geometry can also be drawn, of course — see drawable geometry below.

In general, yapCAD pure geometry supports the operations of parametric sampling, intersection calculation, inside-
outside testing (for closed figures), “unsampling” (going from a point on the figure to the sampling parameter that would
produce it), and bounding box calculation. yapCAD geometry is based on projective or homogeneous coordinates, thus
supporting generalized affine transformations; See the discussion in architecture, below.

simple (non-compound) pure geometric elements

Simple, which is to say non-compound, geometry includes vectors, points, and lines. A vector is a list of exactly four
numbers, each of which is a float or integer. A point is a vector that lies in a w > 0 hyperplane; Points are used to
represent transformable coordinates in yapCAD geometry. A line is a list of two points.

Simple geometry also includes arcs. An arc is a list of a point and a vector, followed optionally by another point. The
first list element is the center of the arc, the second is a vector in the w=-1 hyperplane (for right-handed arcs) whose
first three elements are the scalar parameters [r, s, e]: the radius, the start angle in degrees, and the end angle in
degrees. The third element (if it exists) is the normal for the plane of the arc, which is assumed to be [0, 0, 1]
(the x-y plane) if it is not specified. Arcs are by default right-handed, but left-handed arcs are also supported, with
parameter vectors lying in the w=-2 hyperplane.

10 Chapter 1. Contents

yapCAD Documentation, Release unknown

compound figures

A list of more than two points represents a multi-vertex polylines. If there are at least four points in the list and the last
point is the same as the first, the polyline figure is closed. (We sometimes refer to these point-list polygons or polylines
as poly() entities.) Closed coplanar polylines are drawn as polygons and may be subject to inside-outside testing.
Like other elements of pure geometry, polylines are subject to sampling, unsampling, intersection calculation, etc.

If instead of sharp corners you want closed or open figures with rounded corners, you should use Polyline or Polygon
instances. Instances of these classes are used for representing compound geometric elements in an XY plane with C0
continuity. They differ from the point-list-based poly() representation in that the elements of a Polyline or Polygon
can include lines and arcs as well as points. These elements need not be contiguous, as successive elements will be
automatically joined by straight lines. Polygons are special in that they are always closed, and that any full circle
elements are interpreted as “rounded corners,” with the actual span of the arc calculated after tangent lines are drawn.

The Polygon class supports boolean operations, as described below, and also supports the grow() operation that
makes generating a derived figure that is bigger by a fixed amount easy. This grow feature is very useful for many
engineering operations, such as creating an offset path for drill holes, CAM paths, etc.

boolean operations on Polygon instances

yapCAD supports boolean set operations on Polygon instances, allowing you to construct more complex two-
dimensional figures from union, intersection, and difference operations. Note that the difference operation can result
in the creation of disjoint geometry in the form of two or more closed figures with positive area (see below), or closed
figures with holes.

See Example 11 for a relatively simple example of boolean operations, and Example 12 for a more complex example.

yapCAD employs the convention that closed figures with right-handed geometry (increasing the sampling parame-
ter corresponds to points that trace a counter-clockwise path) represent “positive” area, and that closed figures with
left-handed geometry represent holes. This distinction is currently not operational, but will be important for future
development such as turning polygons into rendered surfaces and extruding these surfaces into 3D.

disjoint compound geometry

Boolean difference operations can result in disjoint figures. It is also possible to combine yapCAD geometric elements
in geometry lists, which is to say a list of zero or more elements of yapCAD pure geometry, which enforce no continuity
constraints. Geometry lists provide the basis for yapCAD rendering.

1.5.6.3 drawable geometry

The idea is that you will do your computational geometry with “pure” geometry, and then generate rendered previews
or output with one or more Drawable instances.

In yapCAD, geometry is rendered with instances of subclasses of Drawable, which at present include
ezdxfDrawable, a class for producing DXF renderings using the awesome ezdxf package, and pygletDrawable, a
class for interactive 2D and 3D OpenGL rendering.

To setup a drawing environment, you create an instance of the Drawable base class corresponding to the rendering
system you want to use.

To draw, create the pure geometry and then pass that to the drawbles’s draw() method. To display or write out the
results you will invoke the display method of the drawable instance.

1.5. yapCAD 11

./examples/example11.py
./examples/example12.py

yapCAD Documentation, Release unknown

supported rendering systems

DXF rendering using ezdxf and interactive OpenGL rendering using pyglet are currently supported, and the design
of yapCAD makes it easy to support other rendering backends.

1.5.7 yapCAD architecture

Under the hood, yapCAD is using projective coordinates, sometimes called homogeneous coordinates, to represent
points as 3D coordinates in the w=1 hyperplane. If that sounds complicated, its because it is. :P But it does allow
for a wide range of geometry operations, specifically affine transforms to be represented as composable transformation
matrices. The benefits of this conceptual complexity is an architectural elegance and generality.

Support for affine transforms is at present rudimentary, but once a proper matrix transform stack is implemented it
will allow for the seamless implementation and relatively easy use of a wide range of transformation and projection
operations.

What does that buy you? It means that under the hood, yapCAD uses the same type of geometry engine that advanced
CAD and GPU-based rendering systems use, and should allow for a wide range of computational geometry systems,
possibly hardware-accelerated, to be built on top of it.

The good news is that you don’t need to know about homogeneous coordinates, affine transforms, etc., to use yapCAD.
And most of the time you can pretend that your vectors are just two-dimensional if everything you are doing happens
to lie in the x-y plane.

So, if you want to do simple 2D drawings, we have you covered. If you want to build a GPU-accelerated constructive
solid geometry system, you can do that, too.

1.5.8 Note

This project has been set up using PyScaffold 3.2.3. For details and usage information on PyScaffold see https://
pyscaffold.org/.

12 Chapter 1. Contents

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://www.cs.utexas.edu/users/fussell/courses/cs384g-fall2011/lectures/lecture07-Affine.pdf
https://pyscaffold.org/
https://pyscaffold.org/

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

13

yapCAD Documentation, Release unknown

14 Chapter 2. Indices and tables

CHAPTER

THREE

WHAT IS PARAMETRIC DESIGN?

Parametric design is a generalizable approach to solving design problems by means of parameters and algorithms, as
opposed to the creation of static drawings or models. Put another way, a conventional design is like a drawing, and a
parametric design is like a piece of software that you configure to create the specific drawing that you want.

3.1 the acrylic box: a parametric design example

For example, imagine that you wanted to design a decorative acrylic box to be assembled from pieces cut from a sheet
of material of uniform thickness. This box will be a squeeze-fit design, so that it assembles like a 3D jigsaw puzzle,
without the need for additional glue or fasteners.

You might decide on the dimensions of your box, and a scheme by which you cut the edges to create tabs and slots so
that when cut, the box will fit together just so. However, the depth of your tabs and slots will necessarily depend on the
thickness of the material, which might vary slightly from sheet to sheet, or vendor to vendor. Furthermore, your cutting
tool (perhaps a laser cutter) will create a kerf, or width of cut, that vary from machine to machine and with depth of
focus.

Finally, your box might be sized to hold a variety of contents, which themselves might vary in size and shape.

One approach is to create a conventional design. You could draw your design for one size of box, material, and thickness
of cut, and then hope you have your tolerances correct. If there is a problem, or you want to change box dimensions,
you will need to go back and revise your design. Each time you revise, you are essentially redoing the entire drawing
from scratch.

Alternately, you could create a parametric design, in which the desired length, width, and height of the box are input
parameters, along with the thickness of the material and an estimate of the kerf. Creating a parametric design system
might be a bit more difficult than creating a conventional drawing, but once you are done you will be able to generate
the design for any desired box, from any desired material thickness, with any kerf, simply by changing a few numbers
– automatically, and without having to revise any code or drawing.

Note: For a yapCAD solution to this particular problem, see the boxcut example in the examples directory

15

https://en.wikipedia.org/wiki/Parametric_design

yapCAD Documentation, Release unknown

This ability to solve for an entire family of related design problems with a single parametric design system is what gives
this approach it’s power and flexibility. For anyone who has spent hours re-drafting a drawing to accommodate minor
variations in requirements, this can be an impressive force multiplier on productivity.

16 Chapter 3. What is Parametric Design?

PYTHON MODULE INDEX

y
yapcad, 5

17

yapCAD Documentation, Release unknown

18 Python Module Index

INDEX

M
module

yapcad, 5

Y
yapcad
module, 5

19

	Contents
	License
	Contributors
	Changelog
	Version 0.1.5
	what’s new:
	Known problems

	Version 0.2.0
	what’s new:
	Known problems

	yapcad
	yapcad package
	Submodules
	yapcad.combine module
	yapcad.drawable module
	yapcad.ezdxf_drawable module
	yapcad.geom module
	yapcad.geom3d module
	yapcad.geometry module
	yapcad.poly module
	yapcad.pyglet_drawable module
	yapcad.xform module
	Module contents

	yapCAD
	what’s yapCAD for?
	software status
	yapCAD installation, documentation, and examples
	installation
	examples
	documentation

	yapCAD goals
	yapCAD examples
	yapCAD geometry
	vector representation in yapCAD
	pure geometry
	simple (non-compound) pure geometric elements
	compound figures
	boolean operations on Polygon instances
	disjoint compound geometry

	drawable geometry
	supported rendering systems

	yapCAD architecture
	Note

	Indices and tables
	What is Parametric Design?
	the acrylic box: a parametric design example

	Python Module Index
	Index

